Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
mBio ; 14(5): e0134923, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37796131

ABSTRACT

IMPORTANCE: Therapies that target and aid the host immune defense to repel cancer cells or invading pathogens are rapidly emerging. Antibiotic resistance is among the largest threats to human health globally. Staphylococcus aureus (S. aureus) is the most common bacterial infection, and it poses a challenge to the healthcare system due to its significant ability to develop resistance toward current available therapies. In long-term infections, S. aureus further adapt to avoid clearance by the host immune defense. In this study, we discover a new interaction that allows S. aureus to avoid elimination by the immune system, which likely supports its persistence in the host. Moreover, we find that blocking the specific receptor (PD-1) using antibodies significantly relieves the S. aureus-imposed inhibition. Our findings suggest that therapeutically targeting PD-1 is a possible future strategy for treating certain antibiotic-resistant staphylococcal infections.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Staphylococcus aureus , Programmed Cell Death 1 Receptor , T-Lymphocytes , Staphylococcal Infections/microbiology
2.
Cell Rep ; 42(9): 113069, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37703880

ABSTRACT

Outcomes of severe bacterial infections are determined by the interplay between host, pathogen, and treatments. While human genomics has provided insights into host factors impacting Staphylococcus aureus infections, comparatively little is known about S. aureus genotypes and disease severity. Building on the hypothesis that bacterial pathoadaptation is a key outcome driver, we developed a genome-wide association study (GWAS) framework to identify adaptive mutations associated with treatment failure and mortality in S. aureus bacteremia (1,358 episodes). Our research highlights the potential of vancomycin-selected mutations and vancomycin minimum inhibitory concentration (MIC) as key explanatory variables to predict infection severity. The contribution of bacterial variation was much lower for clinical outcomes (heritability <5%); however, GWASs allowed us to identify additional, MIC-independent candidate pathogenesis loci. Using supervised machine learning, we were able to quantify the predictive potential of these adaptive signatures. Our statistical genomics framework provides a powerful means to capture adaptive mutations impacting severe bacterial infections.


Subject(s)
Bacteremia , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Vancomycin/pharmacology , Vancomycin/therapeutic use , Staphylococcus aureus/genetics , Anti-Bacterial Agents/pharmacology , Genome-Wide Association Study , Staphylococcal Infections/drug therapy , Staphylococcal Infections/genetics , Staphylococcal Infections/microbiology , Bacteremia/drug therapy , Bacteremia/genetics , Bacteremia/microbiology , Microbial Sensitivity Tests , Treatment Outcome
3.
Elife ; 122023 Jun 08.
Article in English | MEDLINE | ID: mdl-37289634

ABSTRACT

Staphylococcus aureus infections are associated with high mortality rates. Often considered an extracellular pathogen, S. aureus can persist and replicate within host cells, evading immune responses, and causing host cell death. Classical methods for assessing S. aureus cytotoxicity are limited by testing culture supernatants and endpoint measurements that do not capture the phenotypic diversity of intracellular bacteria. Using a well-established epithelial cell line model, we have developed a platform called InToxSa (intracellular toxicity of S. aureus) to quantify intracellular cytotoxic S. aureus phenotypes. Studying a panel of 387 S. aureus bacteraemia isolates, and combined with comparative, statistical, and functional genomics, our platform identified mutations in S. aureus clinical isolates that reduced bacterial cytotoxicity and promoted intracellular persistence. In addition to numerous convergent mutations in the Agr quorum sensing system, our approach detected mutations in other loci that also impacted cytotoxicity and intracellular persistence. We discovered that clinical mutations in ausA, encoding the aureusimine non-ribosomal peptide synthetase, reduced S. aureus cytotoxicity, and increased intracellular persistence. InToxSa is a versatile, high-throughput cell-based phenomics platform and we showcase its utility by identifying clinically relevant S. aureus pathoadaptive mutations that promote intracellular residency.


Subject(s)
Bacteremia , Staphylococcal Infections , Humans , Staphylococcus aureus/metabolism , Staphylococcal Infections/microbiology , Bacteremia/microbiology , Mutation , Cell Line , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
4.
Microorganisms ; 9(5)2021 May 11.
Article in English | MEDLINE | ID: mdl-34064631

ABSTRACT

The reversal of daptomycin resistance in MRSA to a daptomycin-susceptible phenotype following prolonged passage in selected ß-lactams occurs coincident with the accumulation of multiple point mutations in the mprF gene. MprF regulates surface charge by modulating the content and translocation of the positively charged cell membrane phospholipid, lysyl-phosphatidylglycerol (LPG). The precise cell membrane adaptations accompanying such ß-lactam-induced mprF perturbations are unknown. This study examined key cell membrane metrics relevant to antimicrobial resistance among three daptomycin-resistant MRSA clinical strains, which became daptomycin-susceptible following prolonged exposure to cloxacillin ('daptomycin-resensitized'). The causal role of such secondary mprF mutations in mediating daptomycin resensitization was confirmed through allelic exchange strategies. The daptomycin-resensitized strains derived either post-cloxacillin passage or via allelic exchange (vs. their respective daptomycin-resistant strains) showed the following cell membrane changes: (i) enhanced BODIPY-DAP binding; (ii) significant reductions in LPG content, accompanied by significant increases in phosphatidylglycerol content (p < 0.05); (iii) no significant changes in positive cell surface charge; (iv) decreased cell membrane fluidity (p < 0.05); (v) enhanced carotenoid content (p < 0.05); and (vi) lower branched chain fatty acid profiles (antiso- vs. iso-), resulting in increases in saturated fatty acid composition (p < 0.05). Overall, the cell membrane characteristics of the daptomycin-resensitized strains resembled those of parental daptomycin-susceptible strains. Daptomycin resensitization with selected ß-lactams results in both definable genetic changes (i.e., mprF mutations) and a number of key cell membrane phenotype modifications, which likely facilitate daptomycin activity.

5.
mBio ; 11(6)2020 12 08.
Article in English | MEDLINE | ID: mdl-33293382

ABSTRACT

Antistaphylococcal penicillins such as oxacillin are the key antibiotics in the treatment of invasive methicillin-susceptible Staphylococcus aureus (MSSA) infections; however, mec gene-independent resistance adaptation can cause treatment failure. Despite its clinical relevance, the basis of this phenomenon remains poorly understood. Here, we investigated the genomic adaptation to oxacillin at an unprecedented scale using a large collection of 503 clinical mec-negative isolates and 30 in vitro-adapted isolates from independent oxacillin exposures. By combining comparative genomics, evolutionary convergence, and genome-wide association analysis, we found 21 genetic loci associated with low-level oxacillin resistance, underscoring the polygenic nature of this phenotype. Evidence of adaptation was particularly strong for the c-di-AMP signal transduction pathways (gdpP and dacA) and in the clpXP chaperone-protease complex. The role of mutations in gdpP in conferring low-level oxacillin resistance was confirmed by allele-swapping experiments. We found that resistance to oxacillin emerges at high frequency in vitro (median, 2.9 × 10-6; interquartile range [IQR], 1.9 × 10-6 to 3.9 × 10-6), which is consistent with a recurrent minimum inhibitory concentration (MIC) increase across the global phylogeny of clinical isolates. Nevertheless, adaptation in clinical isolates appears sporadically, with no stably adapted lineages, suggesting a high fitness cost of resistance, confirmed by growth assessment of mutants in rich media. Our data provide a broader understanding of the emergence and dynamics of oxacillin resistance adaptation in S. aureus and a framework for future surveillance of this clinically important phenomenon.IMPORTANCE The majority of Staphylococcus aureus strains causing human disease are methicillin-susceptible (MSSA) and can be treated with antistaphylococcal penicillins (such as oxacillin). While acquisition of the mec gene represents the main resistance mechanism to oxacillin, S. aureus can acquire low-level resistance through adaptive mutations in other genes. In this study, we used genomic approaches to understand the basis of S. aureus adaption to oxacillin and its dynamic at the population level. By combining a genome analysis of clinical isolates from persistent MSSA infections, in vitro selection of oxacillin resistance, and genome-wide association analysis on a large collection of isolates, we identified 21 genes linked to secondary oxacillin resistance. Adaptive mutations in these genes were easy to select when S. aureus was exposed to oxacillin, but they also came at a substantial cost in terms of bacterial fitness, suggesting that this phenotype emerges preferentially in the setting of sustained antibiotic exposure.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Mutation , Oxacillin/pharmacology , Staphylococcal Infections/microbiology , Staphylococcus aureus/drug effects , Staphylococcus aureus/genetics , Adaptation, Biological , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Genome, Bacterial , Genomics , Humans , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/genetics
6.
J Biol Chem ; 295(33): 11803-11821, 2020 08 14.
Article in English | MEDLINE | ID: mdl-32605922

ABSTRACT

Staphylococcus aureus is among the leading causes of bacterial infections worldwide. The pathogenicity and establishment of S. aureus infections are tightly linked to its ability to modulate host immunity. Persistent infections are often associated with mutant staphylococcal strains that have decreased susceptibility to antibiotics; however, little is known about how these mutations influence bacterial interaction with the host immune system. Here, we discovered that clinical S. aureus isolates activate human monocytes, leading to cell-surface expression of immune stimulatory natural killer group 2D (NKG2D) ligands on the monocytes. We found that expression of the NKG2D ligand ULBP2 (UL16-binding protein 2) is associated with bacterial degradability and phagolysosomal activity. Moreover, S. aureus-induced ULBP2 expression was linked to altered host cell metabolism, including increased cytoplasmic (iso)citrate levels, reduced glycolytic flux, and functional mitochondrial activity. Interestingly, we found that the ability of S. aureus to induce ULBP2 and proinflammatory cytokines in human monocytes depends on a functional ClpP protease in S. aureus These findings indicate that S. aureus activates ULBP2 in human monocytes through immunometabolic mechanisms and reveal that clpP inactivation may function as a potential immune evasion mechanism. Our results provide critical insight into the interplay between the host immune system and S. aureus that has evolved under the dual selective pressure of host immune responses and antibiotic treatment. Our discovery of an immune stimulatory pathway consisting of human monocyte-based defense against S. aureus suggests that targeting the NKG2D pathway holds potential for managing persistent staphylococcal infections.


Subject(s)
Intercellular Signaling Peptides and Proteins/immunology , Monocytes/immunology , Staphylococcal Infections/immunology , Staphylococcus aureus/immunology , Cell Line , GPI-Linked Proteins/analysis , GPI-Linked Proteins/immunology , Humans , Immune Evasion , Intercellular Signaling Peptides and Proteins/analysis , Phagocytosis
SELECTION OF CITATIONS
SEARCH DETAIL
...